Defining transmission intensity
Implementation in MultiMalModPy
In MultiMalModPy, the user can specify the level of transmission via the following two parameters in setup_sim.py:
- target_output_name
– Defines the epidemiological metric used for calibration.
- target_output_values
– Specifies the target values for the selected metric.
Example:
target_output_name = 'prevalence_2to10'
target_output_values = [0.25]
In this example, the simulation is calibrated to achieve a 2-to-10-year-old malaria prevalence of 25% (0.25).
Matching defined transmission output targets
The target_calibration
directory includes interpolation_data.csv
for each of the models included in the framework.
This file is generated during the transmission calibration process when running:
python launch_sim.py -r calibrun
The table below provides an example of calibration results for EMOD, showing key epidemiological metrics related to malaria transmission.
input_target | seasonality | cm_clinical | simulatedEIR | prevalence_2to10 | prevalence | severe_incidence | n_total_mos_pop | clinical_incidence | clinical_incidence_U5 | modelname | pop_size | importation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
8.44553654 | perennial | 0.45 | 0.343540425 | 0.020460788 | 0.044149221 | 0.000403342 | 56526.55781 | 0.265060585 | 0.088925115 | EMOD | 50000 | FALSE |
10.9762974 | perennial | 0.45 | 0.932994042 | 0.05381089 | 0.106625617 | 0.000708954 | 73407.88671 | 0.636199389 | 0.235184127 | EMOD | 50000 | FALSE |
14.2654175 | perennial | 0.45 | 1.710211503 | 0.095421294 | 0.173174509 | 0.000903154 | 95345.36855 | 0.956651654 | 0.423187833 | EMOD | 50000 | FALSE |
18.5401442 | perennial | 0.45 | 2.573332919 | 0.138401713 | 0.224445658 | 0.001041937 | 123878.2838 | 1.113905394 | 0.624657857 | EMOD | 50000 | FALSE |
24.095821 | perennial | 0.45 | 3.623527973 | 0.185692034 | 0.266564637 | 0001239512 | 160984.3319 | 1.22631187 | 0.853578362 | EMOD | 50000 | FALSE |
31.316293 | perennial | 0.45 | 5.016965242 | 0.242720614 | 0.307751194 | 0.001423436 | 209179.4093 | 1.326620187 | 1.145714057 | EMOD | 50000 | FALSE |
40.7004273 | perennial | 0.45 | 6.53350783 | 0.295704873 | 0.338061961 | 0.001647561 | 271863.5711 | 1.387121162 | 1.429262657 | EMOD | 50000 | FALSE |
Column Descriptions
- input_target: The transmission target input value for the simulation.
- seasonality: The seasonality type, indicating the transmission pattern (e.g., perennial).
- cm_clinical: The clinical case management rate.
- simulatedEIR: The estimated entomological inoculation rate based on the simulation.
- prevalence_2to10: Prevalence of malaria in children aged 2 to 10 years.
- prevalence: Overall prevalence of malaria in the population.
- severe_incidence: The incidence rate of severe malaria cases.
- n_total_mos_pop: Total number of mosquitoes in the population.
- clinical_incidence: Overall clinical incidence rate of malaria.
- clinical_incidence_U5: Clinical incidence rate of malaria in children under 5 years old.
- modelname: The name of the model used in the simulation (e.g., EMOD).
- pop_size: The size of the population used in the simulation.
- importation: Indicates whether importation of cases is considered (TRUE or FALSE).
Defining your own transmission target
If you need to run simulations beyond the predefined datasets, follow this process:
python launch_sim.py -r calibrun
By default, this runs all three models with the settings specified in setup_sim.py.
Key parameters to configure include:
- Population size (pop_size)
- Burn-in duration
- Seasonal profiles
- Case management levels
Once the simulations complete, new .csv
files will be generated in the target_calibration
folder for each model.
These files are named after your most recent calibration run.
You should review and decide whether to integrate them into your interpolation_data.csv
files.
Special Considerations for OpenMala
Finalizing and Running Production Simulations
Once you have finalized your interpolation_data.csv
files, you can proceed with running production simulations.