112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193 | def daily_timeseries_by_seed(fdir, df_all, channel_list, sweepvar='modelname', facet_var='ageGroup', agegrp='0-100'):
"""
Parameters:
fdir (str): Directory where the plot will be saved.
df_all (pandas dataframe): Dataframe that includes combined model results.
channel (str): Variable representing the y-axis data to be plotted.
sweepvar (str, optional): Variable to group the data and create multiple lines on the plot. Default is 'modelname'.
facet_var (str, optional): Variable used to create subplots based on its unique values. Default is 'ageGroup'. (The default should change)
agegrp (str, optional): Age group filter for the data. Default is '5-10'.
Returns:
None (plots are saved to disk).
"""
df_all = df_all[df_all['timestep'] >= 1460] # remove the first 4 years of the 55 year monitoring period
df_all['day_date'] = df_all['timestep'].apply(convert_to_date)
reductions = [f'25%-10%', f'50%-10%', f'50%-25%']
df_all = df_all[df_all['cc_title'].isin(reductions)]
for channel in channel_list:
print(f'#----- Plotting daily timeseries for {channel}-----#')
if channel == 'prevalence_2to10':
ylab = channel.replace('prevalence_2to10', '$\it{Pf}$PR$_{2-10}$ (%)')
else:
ylab = channel.replace('_', ' ')
if facet_var != 'ageGroup' and agegrp is not None:
df = df_all[(df_all.ageGroup == agegrp)]
if agegrp is None:
print('Warning: agegrp is set to None, it will combine all ages, please check your age aggregation')
# df = df_all.groupby(['day_date', sweepvar, facet_var])[channel].agg(np.mean).reset_index()
df = df_all.groupby(['day_date', sweepvar, facet_var, 'seed'])[channel].agg(np.mean).reset_index()
if 'modelname' not in [sweepvar, facet_var] and len(df['modelname'].unique()) > 1:
raise ValueError('modelname needs to be specified in plot if results were combined for more than 1 model')
unique_facets = df[facet_var].unique()
unique_facets = np.sort(unique_facets)
color_palette = sns.color_palette('colorblind', max(len(df['seed'].unique())),4)
nx = 2
ny = 3
f = 1
lower_prevalence = [0.25, 0.5, 0.5]
upper_prevalence = [0.1, 0.1, 0.25]
# Iterate through each facet and plot the lines for each group
for m, model in enumerate(df[sweepvar].unique()):
model_df = df[df[sweepvar] == model]
fig = plt.figure(figsize=(10 * nx, 10 * ny))
f = 1
for i, (facet, facet_df) in enumerate(model_df.groupby([facet_var])):
ax = fig.add_subplot(ny, nx, f)
f = f + 1
for si, (seeds, sdf) in enumerate(facet_df.groupby(['seed'])):
xmean, ymean = get_x_y(sdf, 'day_date', channel, channel)
if model == 'OpenMalaria' and channel == 'simulatedEIR':
ymean[channel] = ymean[channel] / 5
ymean[f'{channel}_min'] = ymean[f'{channel}_min'] / 5
ymean[f'{channel}_max'] = ymean[f'{channel}_max'] / 5
xmean = xmean['day_date']
merge_df = pd.merge(left=xmean, right=ymean, on='day_date')
merge_df.sort_values(by='day_date', inplace=True)
ax.plot(merge_df['day_date'], merge_df[channel], '-', linewidth=0.5, label=f"{si}",
color=color_palette[m])
x_min_note = merge_df.loc[merge_df['day_date'] == min(merge_df['day_date'])][channel].iloc[0]
x_max_note = merge_df.loc[merge_df['day_date'] == max(merge_df['day_date'])][channel].iloc[0]
year_factor = max(int((max(merge_df['day_date']).year - min(merge_df['day_date']).year) / 8), 1)
ax.annotate(f"{round(x_min_note, 2)}", xy=(min(merge_df['day_date']), x_min_note),
xytext=(min(merge_df['day_date']), x_min_note - int(x_min_note / 10)))
ax.annotate(f"{round(x_max_note, 2)}", xy=(max(merge_df['day_date']), x_max_note), xytext=(
max(merge_df['day_date']) - pd.DateOffset(years=year_factor), x_max_note - int(x_min_note / 15)))
if channel == 'prevalence' or channel == 'prevalence_2to10':
ax.axhline(lower_prevalence[i], linestyle='--')
ax.axhline(upper_prevalence[i], linestyle='--')
ax.set_ylabel(ylab)
ax.set_ylim(-0.1, upper_prevalence[i]+0.1)
ax.xaxis.set_major_locator(mdates.AutoDateLocator(maxticks=8))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
ax.set_xlabel('Year')
ax.set_title(f'{model}: {facet}')
fname = f'timeseries_daily_{channel}_{agegrp}_by_{model}_by_seed'
fig.savefig(os.path.join(fdir, f'{fname}_zoomedin.png'), bbox_inches='tight')
# fig.savefig(os.path.join(fdir, f'{fname}.pdf'), bbox_inches='tight')
plt.close()
|